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NOTATION

A Coefficient in general auxiliary equation,
Equation [84]

a Constant in Equation [19]

B Coefficient in general auxiliary equation,
Equation [84]

b Constant in Equation [19]

C Constant

Cf Drag coefficient, DI pU2S

D Drag

E Function of H in Table 3

e Base of natural logarithms

H Shape parameter of velocity profiles, 6*/0

I Shearing-stress distribution integral,* IM d( )

i Subscript referring, to initial W 6

conditions

n Exponent of power law for velocity profiles,
Equation [81

o Subscript for flat-plate quantities

p Pressure in fluid

q Exponent in Equation [621

Rx  'Reynolds number based on x, Ux/Y
Re  Reynolds number based on 0, U/Y
r. Transverse radius to surface of body of revolution

S Surface area

s Constant in Equation [26]

t Subscript indicating quantities at the trailing
edge of an airfoil

U Velocity at outer edge of boundary layer

U. Undisturbed velocity of fluid

u Velocity in boundary layer parallel to surface

u Friction velocity, Tw/p

v Velocity in boundary layer normal tc surface

W Width

x Coordinate parallel to surface

y 'Coordinate normal to surface

Pressure-gradient parameter,
Tw k

Shearing-stress parameter, T 6
7 * dU u

F Burl pressure-gradient parameter, I V-R1/
U dx*



Velocity parameter, (),,,

6 Thickness of boundary layer

d Displacement thickness of boundary layer, '(1- )dy

Buri skin-friction parameter

17 Oruschwitz velocity profile shape parameter, 1 - ya

S Momentum thickness of boundary layer, RU(1-U.)dy

Y Kinematic viscosity of fluid

p Density of fluid

SShearing stress

Ir Shearing stress at wall

Parameter for integral of shearing-stress

dsrbto - d y

40



A METHOD FOR THE CALCULATION OF THiE 'TURBULENT BL.DARY LAYE

IN A PRESSURE GRADIENT

by

Paul S. Granville

ABSTRACT

A method is described for the calculation of the development of incompress-

ible turbulent boundary layers in pressure gradients, so that drag and separation of

flow may be predicted more accurately. The principal contribution is the formulation

of new relations for the variation with pressure gradient of 1, the shearing stress at

the wall (local skin friction) and of 2, the integral of the shearing stresses across

the boundary layer for use in a moment-of-momentum equation recently derived by

Tetervin and Lin.

With the assumption of the one-parameter characterization of velocity profilesby a shape parameter H, the moment-of -momentum equation and the von Kairmain mo-

mentum equation constitute a working method involving the solution of a pair of simul-

taneous first-order differential equations.

As an introduction to the subject of turbulent boundary layers in pressure

gradients, a review of previous methods Is included in this report.

INTRODUCTION

An accurate calculation of the growth of turbulent boundary layers

in a pressure gradient is required for many problAms in hydrodynamics, aero-

dynamics and hydraulics where high Reynolds numbers are involved. Some of

these problems are the calculation of the drag of airfoils and of bodies of

revolution, the prediction of separation of flow on airfoils, the prediction

of flow conditions in the test sections and diffusers of water tunnels and

wind tunnels, and the prediction of the flow (frictional wake) around the

tails of bodies of revolution for use in designing propellers and control

surfaces.
Unlike laminar boundary layers, turbulent boundary layers are not

very amenable to mathematical analysis owing to the present incomplete state

of knowledge of the mechanics of turbulent flow. Nevertheless, considerable

success in analyzing turbulent boundary layers on flat plates with zero pres-
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sure gradient has been achieved by such investigators as Prandtl and von

Kirmin. No comparable progress has been attained to date, however, in the

theory of turbulent boundary layers in a pressure gradient, especially in an

adverse (positive) pressure gradient.

Briefly, the current objective for analyzing turbulent boundary

layers in a pressure gradient is to develop an equation for the variation of

the shape of the velocity profile within the boundary layer. This formulation

is required as an auxiliary equation for complementing the well-known- 1

von Karman momentum equation. Auxiliary equations have been obtained empir-

ically by a number of investigators. Because of significant differences ex-

isting among these empirical formulations, Tetervin and Lin attempted a the-

oretical approach to the problem. One of the equations obtained by them is' a

moment-of-momentum equation derived from the basic Prandtl boundary-layer

equations and from a one-parameter characterization for the shape of the ve-

locity profiles. A-ithough the moment-of-momentum equation of Tetervin and Lin

has the required form for an auxiliary equation, it lacks essential relations

needed for numerical computations-namely, the variation with pressure gra-

dient of the shearing stress at the surface (local skin friction) and of the

integral of the distribution of the shearing stresses across the boundary

layer. The principal aim of this paper is to supply the necessary shearing-
stress relations to this moment-of-momentum equation in order to develop a

suitable auxiliary equation with a theoretical basis, to be used in conjunc-

tion with the von Kirman momentum equation.
The relation for the local skin friction in a pressure gradient is

derived on the basis of the recent work of Ludwieg and Tillmann who demon-

strated the validity of applying the so-called "law of the wall" to the inner

flow in the boundary layer. The integral of the transverse distribution of

the shearing stresses in a pressure gradient is found empirically in this

paper to be a function of similar flat-plate data for zero pressure gradient.

The moment-of-momentum equation, after being modified by the inclu-

sion of the shearing-stress relations, is demonstrated to agree with the aver-

age of other existing auxiliary equations whose formulation is based on purely

empirical grounds.

FUNDAMENTAL RELATIONS FOR TURBULENT BOUNDARY LAYES

Some of the fundamentals of turbulent boundary layers are briefly

reviewed here as an introduction to the subject. The comprehensive summaries

by Prandtl, Goldstein, and Schlichting, References 1, 2, and 3 respectively,
should be referred to for fuller details.*

*Reference are flated an page 38.



In general, steady fluid flow (quasi-steady for turbulent flow).
manifests itself in two distinct types of motion, laminar at low Reynolds num-
bers and turbulent at high Reynolds numbers. Whereas laminar flow proceeds

in a regular pattern of streamlines, turbulent flow advances in a haphazard

combination of mixing motions. Although the variations in velocity and pres-
sure of turbulent flow follow a random course, they may be considered to flue-.
tuate about some mean value as shown in Figure 1.

The analytic treatment of turbulent flow consists in separating the
fluid motion into a mean flow and a superposed fluctuation flow. Then the

mean and fluctuation velocities and

pressures are substituted Into the
Navier-Stokes equations for viscous

flow and into the equation of conti-
nuity. After appropriate time aver-
ages are formed, the resulting equa-
tions in terms of mean quantities

resemble those for laminar flow, with
the exception of additional terms in-7

volving averages of various products

of the fluctuation quantities. These

fluctuation terms represent the mixing

motion of turbulence and act as appar-
ent stresses (Reynolds stresses) with-
in the fluid. Since an analytical

description of the Reynolds stresses Time--
has not been formulated, a direct solu- Figure 1 - Velocity Fluctuations of
tion of the differential equations for Turbulent Flow at a Fixed Position
turbulent flow is virtually impossible.
The theory of the flow of viscous fluids serves as a useful guide, however,

even though empirical or semi-empirical methods may be followed in many prac-~tical cases.

At relatively high Reynolds numbers, the viscous effects of fluids
like air or water are confined mostly to a narrow region or bdnd next to the
solid surface. The laminar flow through this region, or boundary layer as it

h is better known, acts in the same manner as fully developed viscous flow in

pipes, inasmuch as it becomes turbulent after a critical value of some Reyn-

olds number is exceeded. The equations of motion for the turbulent boundary
layer are found analytically from the Navier-Stokes equations for turbulent
flow in a way analogous to that for the laminar boundary layer-that is, by
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rejecting terms involving small orders of magnitude. For steady incompress-

ible flow with negligible longitudinal curvature, the turbulent-boundary-layer

equations of motion are found to be

OU + OV IX I a DP y , 0I

for 0 -< y < 6 and 0 < u s U. Here u and v are the x- and y-components of the

velocity within the boundary layer, parallel and normal to the surface of the

body respectively, U is the velocity at the outer edge of the boundary layer,

6 is the thickness of the boundary layer, p is the density of the fluid, and

r is the total shearing stress within the fluid. It is to be noted that the

velocities and pressures indicated in Equation (i] represent time averages of

the turbulent quantities in the flow. In addition to two-dimensional flow,

Equation (1] is also applicable to axisymmetric flow when the boundary-layer

thickness d is small relative to the transverse radius of the solid boundary

rw

The accompanying equation of continuity for two-dimensional flow is

Ou Ov (2a)
50

and for axisymmetric flow it Is

Lu- + + jm0 (2b)

for << rw.
From the boundary-layer equation of motion, Equation [1], and the

equation of continuity, Equation (2], the von Karmin momentum equation is de-

rived by integrating each term of [i) with respect to the y-coordinate. The

von K"rmin equation represents the basic working equation for calculating the

growth of boundary layers in the presence of pressure gradients. For purposes

of analysis the momentum equation is best expressed in terms of the displace-

ment thickness 6*, the momentum thickness 0 and the shape parameter H which

are defined as

-f:( -U.)dy (31

o f -a(I .)dy [4]
0

and

H (5]
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In terms of these quantities the von Kiran momentum equation for two-

dimensional flow becomes

+ (H + 2) 1 __ - wf6a]
dxU dx p U2

and for axisymmetric flow it becores for 8 << rw

d~rG#) rG U ' [b
dW + (H+2) u r (6b!
dx U dx w pe

where w s the shearing stress at the wall.
Physically the von Kirmin momentum equation is interpreted as repre-

senting the rate of change of the momentum of the fluid within the boundary

layer as a function of the frictional resistance and of the pressure gradient.

When solving a particular problem, U, the velocity at the outer edge of the

boundary layer, and dU/dx, representing the pressure gradient, are given by

measurements from pressure taps on the body or by potential-flow calculations.

Quantities such as the shape parameter H and the local-skin-friction coeffi-

cientrw/U' , have to be determined by other means. By assuming flat-plate

values for H and rw/pU, the momentum equation can be integrated to give an

approximate solution which in many cases is not adequate for the problem in

question. The more exact solution depends on acquiring auxiliary relations

for the variation of H and mw/oU2 in q pressure gradient. The detailed con-

sideration of H and rw/U 2 in a pressure gradient is the major theme of this

j paper and will be discussed fully in the subsequent sections.

As an illustration of the flow idealized by boundary-layer theory,

* Figure 2 shows the flow pattern around a body of revolution. Essentially,

there is potential flow outside the boundary layer and viscous flow within.

The viscous boundary-layer flow is laminar from the nose up to the transition

zone where it develops into a turbulent flow. Beyond the tail, the flow

through the boundary layer merges to form a wake trailing behind the body.

The velocity U at the outer edge of the boundary layer is that of

potential streamline and varies from zero at the stagnation point at the nose,

through a range of values along the body to the free-stream velocity Uo in

the wake at infinity. Although the pressure p at the outer edge of the bound-

ary layer is essentially the same as that across the boundary layer, it varies

along the body with x and thus produces a pressure gradient. The pressure p

and the velocity U of the potential streamline are related by the Bernoulli

equation as follows
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P + constant

or[7]

dU

X + pu ax.0 J
A negative pressure gradient Is favorable and a positive pressure gradient
adverse for preventing separation of flow.

Within the boundary layer the velocity u is zero at the surface,

since no slippage occurs, and Increases to U at the outer edge of the boundary

layer. This variation of u with y, or the velocity profile, is very important
in the study of boundary layers. In the case of turbulent boundary layers,
the following power law variation gives an excellent approximation for most
flow conditions, and a rough approximation for strong adverse pressure

gradients.

U

where the value of the exponent n depends on the previous development of flow

in the boundary layer.

Potontial Flow------ .

Transition

Stagnation

Point U-0t

U- Toll____ Woke____ ________ ____

uq , d Adverg Prueure Gradiifit

Figure 2 - Typical Boundary Layer Around a Body of Revolution



EXISTING METHODS FOR CALCULATING TURBULENT BOUNDARY LAYERS
IN A PRESSURE GRADIENT

Interest in effects of pressure gradient on turbulent boundary lay-

ers has centered largely on adverse (positive) pressure gradients causing sep--
aration of flow such as occur in diverging conduits and on the suction side

of airfoils at large angles of attack. (A review of the literature on this

subject appears in Reference 4.) Since separation of flow is characterized

by a reversal in the direction of flow at the surface, the velocity profile

of the boundary layer suffers marked changes in shape as the flow approaches

the point of separation, as seen in Figure 3. Hence the study of flow lead-

ing to separation must be directed towards the determination of the manner in

which the shape of the velocity profile is affected by pressure gradients, as

well as by other factors, such as Reynolds number.

Since a single parameter for the shape of the velocity profile

greatly simplifies the mathematical analysis, considerable effort towards this

goal has been expended by various investigators. Gruschwitz s plotted u/U

against y/o in his experimental study of velocity profiles and, as shown in

Figure 3, obtained a family of velocity profiles In various pressure gradients.

He concluded that the value of u/U at some standard value of y/0 could be used

to characterize the shape of the velocity profile for any pressure gradient.

Following this concept Gruschwitz defined a form parameter P) such that

= 1 - 91

where -. Since the shape parameter H, which can be written

H = Jo

-is also a function of the shape of the velocity profile, it cannot be inde-

pendent of q if the single-parameter relationship holds.

This is confirmed by Gruschwitz who plotted H against q for a series

of test data. As seen in Figure 4, a fairly smooth variation between n and H

results. It is to be noted that Kohl, from tests covering a wider range of

Reynolds numbers than Gruschwitz, found that v is not a unique function of H

but that it varies slightly with Reynolds number.
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As seen in Figure 5, plots of u/U against H yield single curves for each value

of y/e.

1.0
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and finally

- 17 - [[151

The curve for the relation Just derived for n(H) is drawn on Figure 4 and

shows close agreement with the test data of Gruschwitz. Likewise the curve

-for the power law for the velocity profiles may be expressed in the form

Curves drawn from this equation in Figure 5 show close agreement with the data

of von Doenhoff and Tetervin. From the experimental evidence Just considered,

it is seen that the general power law is an excellent approximation for the

velocity profiles of turbulent boundary layers.

After the particular parameter for the shape of the velocity profile

has been selected, its variation in a pressure gradient remains to be deter-

mined. It is now recognized that the rate of variation of this shape param-

eter and not the parameter itself is dependent upon the local-pressure-

gradient parameter and upon other local parameters of the boundary layer.

However, an early study by Burn 9 in 1931 on accelerated and retarded flows in

closed conduits considered the shape of the velocity profile to depend direct-

ly on the pressure gradient.

The parameter used by Bur fbr the shape of the velocity profile is

U .117

where R.= . and P is the kinematic viscosity of the fluid. Actually r is a

V
local parameter for the pressure gradient and hence can only roughly represent

the shape of the velocity profile whose development depends on the previous

history of the flow. The parameter F as used by Bur in his analysis has

merit in providing a simplified method for calculating the momentum thickness

0 approximately. When F is substituted into the von Kirmin momentum equation,

Equation [6a], the following expression is obtained

d ( R 4 0r H + 2 ]1

W _1/4

where -w- 1/4 From experimental evidence, Bur linearized this ex-*
pU'

expression to

d 2/4
(R e) - a - br [191



or

dT * ) =a U dx o

where a and b are empirical constants. Equation [19] is integrated as a

linear first-order equation in terms of R' / to provide a direct solution for

the momentum thickness 0. From test data Burl considered separation to occur

at r = -0.06. The Burl method of analysis was continued by Howarthl° who re-

fined the method by solving Equation [18] directly, using experimental data

for and H.

At the same time that Burl published his work, Gruschwitz.5 presented

a more satisfactory method of analysis. Introducing the shape parameter n

and realizing that its rate of change in a pressure gradient is more important

than its local value, Gruschwitz plotted the nondimensional differential

quantity -U -LU (U2 ) against 3 and obtained a linear variation for his test
U2 dx

data as shown in Figure 6. Although Gruschwitz expected some effect due to

Reynolds number, the narrow range of his data, 1 x 103 < RO < 4 x 10s, pre-

cluded any such indication and consequently he included no Reynolds number

0.003

+ Gruschwitz Test 2
X Gruschwitz Test 3

0.002 0 Gruschwitz Test 4

* Gruschwits Test 5 X + -
A Nilwrodse T90 X

Separating Flowso~o01

-o.ooi/A _____ ____ ____x____ ____

-0.002
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6 - Gruschwitz Form Parameter j7 as Function of
Pressure Gradient (Gruschwitz, Reference 5)
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effect in his analysis. The empirical equation fitting his test points is

given as

a 2 - 0.00894,, - o.oo461 '(20
U2  d

for n < 0.8. When 0 d~i-- is expanded to d + 2;7( -), it is seen that
U2  dx dx

the rate of variation of n, dn/dx, and the nondimensional pressure gradient
e du are both included in Equation (20]. The variation of i? is calculated
U dx
from the auxiliary equation, [20], when used simultaneously with the

von Karman momentum equation. Qruschwitz considered separation to occur at
n>, 0.8 which is equivalent to H > 1.85.

From test data covering a wider range of Reynolds numbers,

1 x 103 < R, < 3.5 x 10', Kehl6 incorporated the effect of Reynolds number in

the Gruschwitz equation and obtained

d n a 0.008947 - 0.0164 + 0 821]
2 XlogloR (R,-300)

Using H rather than q as the. single parameter for the shape of the

velocity profiles, von Doenhoff end Tetervin 7 made an empirical study of 'the

variation of H in pressure gradients in order to obtain an auxiliary equation.

From a collection of NACA and other test data representing a range of Reynolds

numbers,1 x 103 < R < 7 x 10' roughly, they considered the rate of change of

H to vary as follows

a d - [-2.035(H - 1.286) -2 ( e - 7 [22]

pOU2

where rw /pU2.Is taken from the flat plate formula of Squire and Young",

.U 5.890 lOg0 (4.075-. (23

Von Doenhoff and Tetervin considered separation to occur in the range

1.8 < H < 2.6. It is to be noted that the pressure-gradient parameter is
U&-M and the parameter representing the Reynolds-number effect is r /PU', theU dxIW
local-skin-friction coefficient. Although these parameters are satisfactory

in themselves for describing the flow, their combination into a single term In

the empirical equation seems objectionable for analysis.
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Using substantially the same data as von Doenhoff and Tetervin and

a somewhat different analysis, Garner
12 obtained a more amenable auxiliary

equation for the rate of variation of H

ed[ [0.0135(H-1 .4) 9 dU] 5( - 1.4)dx * L [24 ]

The following flat-plate formula of Falkner
13 for the skin-friction-

coefficient is used in its determination

. 0.006534 [25]
,ou2 R /

A noteworthy feature of Garner's equation is the separation of the pressure-

gradient parameter 1 jU and the Reynolds number R9 into different terms.

Theoretical derivations of an auxiliary equation have proved very

difficult. A strenuous but unsuccessful effort was made by Coleman
1 4 in 1947.

A very promising avenue of approach was introduced, however, more recently by

Tetervin and Lin'5 who investigated various integral forms of the Prandtl

boundary-layer equation, [1]. By multiplying each term of this equation by

an arbitrary function and then integrating, it is possible to derive various

families of equations. Using as the multiplying function us1 yS, where s i

and s2 are arbitrary constants, the general integral form of the boundary-

layer equation is written

u Ou a a V' Ou Uy 5 d d a 8 1Or s" S2dy [26]

As before, this equation is accompanied by the equation of continuity, [2].

When both exponents s and s2 are set equal to zero, the von Kirmin momentum

equation is specified. When si =. 1 and s2 = 0, an energy equation results;

when s = 0 and s2 - 1, a moment-of-momentum equation is indicated.

The moment-of-momentum equation appears to be the most promising of

these derived integrated equations for obtaining a theoretical auxiliary equa-

tion for the variation of H. Assuming the general-power-law distribution for

the velocity profile, (8], Tetervin and Lin obtained the moment-of-momentum

equation in the form

(H1 dU , (27
-udx H(H' -1)5 - (HI. 1)(H2-1Jd..

dxpU2 fop OU
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This equation is applicable to two-dimensional flows and to axi-

symmetric flows (6 << rw). For purposes of calculation it is seen that rela-
tions for the variation of the shearing stresses in a pressure gradient are

still required. The main objective of this paper is the conversion of the
above equation into a usable auxiliary equation by supplying relations for the
variation in a pressure gradient of the local-skin-friction coefficient T./pUs1 7
and the integral of the shearing-stress distribution-, 2d .

For comparison the various auxiliary equations for the variation of

the shape parameter in a pressure gradient are listed in Table 1. It is seen

that Buri's method does not provide for an auxiliary equation since no allow-

* ance is made for the effect of the previous development of the flow. On the

other hond, the Gruschwitz method is correct in utilizing the rate of change

of a shape parameter in its analytic formulation. It is seen that Kehl re-

moved one of the main objections to the Gruschwitz method by incorporating the

TABLE 1'

Summary of Methods for Calculating the Turbulent Boundary Layer
in a Pressure Gradient

Criterion Auxiliary Equation
Investigator for (for use with von irdn Nomentum Equation) Remarka
_ _ _ Separation

gone ezplicitly; von Kirmin momentum equation modified to r is not proper poram-
star for shape of ,-

locity profile; no
ura19w1 rnc-0.06 inmethod

Reference 9offct of eviou
development of flow In

_ _ _ _ _ _ boundary layer

aruschwits. . .041 (0 No Repolds-number of-

Reference 5I luded; b1ed
Gruaohwita method ex-

tended to Include of-Kehi, 1914 .41)..064+.ILReee, 69* 0.008 1106 (.211 foots of Reynolds Mo-Refeenc 6 O_9,7V % -001ber bied on test dat'H"~~~~ X- olow- a- ,_< 3.5 x) lop"'
von Doen(1off bil; pr ce. on

and Tetervin 1.8<1<2.6 test
1943, 1 z10is< 7 a 10'
Reference 7 w5. 8.90 106J (4. 075 1)]T (231

n1I - rmooulS(.. 4 ., Dosed mostly on ameReferne 12 2.6 124) ( dat as von DoenhoffGanr 
and Tetervin

Theoretically delved
Tetervin and 0 but loIs*g in shear-
Lin, 1950, (27 n-str eo informtion
Referenee 15 +1(ul1)(l) -' required for ierio
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effects of Reynolds number. Mention is made of an experimental study of the

Gruschwitz method by Peters16 who found that it gave fair results for n but

that it seemed useless for predicting separation. The form of the Garner

equation is superior to that of the von Doenhoff and Tetervin equations be-

cause it separates the pressure-gradient parameter and the Reynolds-number

effect. A critical comparison of the two equations just mentioned, made by

Fage and Raymer, 17 claimed serious numerical discrepancies between them even

though they had both been derived for the most part from the same test data.

The moment-of-momentum equation developed in the present report will be found

similar in form to that of the Garner equation. A graphical comparison of all

the methods with the exception ofthe Buri method is shown at the end of this

report.

LOCAL SKIN FRICTION AS A FUNCTION OF PRESSURE GRADIENT

The manner of the variation of the local skin friction or shearing

stress at the wall rw with pressure gradient as well as with Reynolds number

is required in both the von Kirm~n momentum equation and the moment-of-

momentum equation. Until recently the experimental study of wall shearing

stresses was hindered by the poor precision of the existing experimental tech-

niques, based on measuring the rate of change of the momentum and the pressure

of the flow through the boundary layer. In 1949 Ludwieg and Tillmann18 intro-

duced a new method for accurately measuring the wall shearing stress in a pres-

sure gradient. The improved technique, described in Reference 19, consists in

measuring the rate of heat transferred to the fluid from a calibrated instru-

ment imbedded in the wall. From their measurements Ludwieg and Tillmann

proved that the wall shearing stress diminishes in an adverse pressure gradi-

ent, even close to the separation point. In addition, they demonstrated that

the so-called "law -of the wall" can be used for a quantitative analysis of the

variation of the wall shearing stress in a pressure gradient.

The "law of the wall"12 0 states that within the boundary layer in a

pressure gradient there is a region of flow next to the wall which has veloc-

ity and skin-friction characteristics similar to that of a flat plate in a

zero pressure gradient. As seen in Figure 7 this region of flow or inner flow
has subregions of a laminar sublayer and a transition zone. The Prandtl

friction-velocity relationship for a flat plate2 can then be applied to the

whole inner flow or
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where u, -6ws the friction velocity. Tre functional relationship satisfy-

Ing the turbulent portion of the inner flow is

u M C 1 + C2 log(u-) [29]
U,

For simplicity of analysis, the above logarithmic formulation can be closely

approximated by-the general power law

u [30]

By virtue of the law of the wall, C and n0 are independent of pressure gradi-

ent and depend only on the Reynolds number. The applicability of the power-

law formulation is demonstrated in Figure 8 where a logarithmic plot of u/U

against y/O is shown for various pressure gradients. It is seen that the

curves are straight and parallel up to about y - 9. This situation can be ex-

plained analytically from the power law as follows. Substituting y 0 9 and

u - u. into the power law gives

2A [ (U," 31]UTr

Dividing Equation (30] by [31] produces

UO (32]

or
u#

log log- + n log. (3,]

Since no does not depend on pressure graalent, the curves of log u/U should be

straight and parallel up to y = 0.

Ludwieg and Tillmann demonstrated experimentally that the law of the

wall Is also valid for analyzing the variation of the wall shearin stress in

a pressure gradient. From test data in the range of Reynolds number

1 x 103 '< R* 4 4 x 104, they obtained the following expression for the varia-

tion of the local-skin-friction coefficient in a pressure gradient

.w = 0. 0290 ,1.705 (34]

pU2 R 0.

where

y - 2.333 x 10
°-0396H (35]
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A general equation for the variation of the skin rriction in a pres.-

sure gradient will now be derived from the law of the wall by using the power-

law formula for the velocity profile of-the inner flow,

U I( uy n0  (30]

As before, at y = 9, u = u, and

u,u: c(V~)i [31]

After substituting u,, = and = , there results

2* 2w (CR o)1 +o (361
pU

2

For two different pressure gradients at the same Reynolds number R and conse-

quently at the same value of C and n

the following ratio can be formed

(rwu)2 
FS)37

If the reference condition is that

for zero pressure gradient, this FlO.

equation becomes

' w . ( O - (381

where the subscript zero refers to

zero pressure gradient. For a power- J-- 7  4I' - - -

law velocity profile of a flat plate

with zero pressure gradient, Equation. SC

[14] becomes 17

. ,# (391 Wall

Figure 7 - Regions of Flow Within the
Turbulent Boundary Layer in a

Pressure Gradient



18

A Pressure Drop

-0.1 X Constant Pressure

-0.2

- /~

-0.4 /_ _

-1.5 -0 -0.5 0 0.0 1..

Figure 8 - Losarthmo Plot of Velocity Profiles in Pressure Gradients a
Illustrating "The Law of the Wall" (Ludweg and Tllmann, Reference 18)

Then [38] reduces to

7.

pU2 pU2 V

Comparing the exponents of teon (34] an (4],it is seen that the exponent

obtained by Ludwieg and Tillmann has a constant value of 1.705 while that of

the eguation Just derived depends on Ho, which varies with Reynolds number.

From Figure 11 showing the variation of H with Re, the exponent 4/Ho+l is

found equal to 1.639 for R, - 1.5 x 10, and 1.800 for R. a 4 x 104. These

values compare favorably with the value 1.705 of Ludwieg and Tillmann.
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Flot Plate

o.0

' +'0.8 3

X .2 1.4 1* I 20 2.2 2.4 2.6

1.4

0.4

H. 1or Difeen Vaue of0 H.* 2.4 .

Figure 9 - The Variation of Pressure-Gradient Factor M0o 1 with, H for Different Values of H.

Since from Equation (9]

- V' -1(41]

y may be expressed as a function of H using [15],

H- [42]

and

443

The variation of with H and Hi is shown in Figure 9. Since this fac-

tor which represents the effect of pressure gradient on the skin friction di-

minishes asymptotically towards zero, with Increasing H, it can only describe

flow conditions approaching separation and not conditions right at the separa-

tion point where the wall shearing stress is zero.
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LOCAL-SKIN-FRICTION COEFFICIENTS FOR FLAT PLATES

AT ZERO PRESSURE GRADIENT

Since the evaluation of the local skin friction in a pressure gradi-

ent depends on a knowledge of its value, in zero pressure gradient, as seen in

Equation [40], a review of available information on the drag of flat plates

should now be considered. A smooth flat plate moving parallel to the direc-

tion of motion represents an excellent example of boundary-layer flow in a

zero pressure gradient. The analytic study of the drag of flat plates has

proceeded on a semi-empirical basis by such investigators as Prandtl and

von Kirman.)' From various theoretical and empirical considerations a func-

tional form is assumed for the velocity profile involving both the velocity

and the local skin friction. Then an integration over the length of the plate

leads to a general expression for the drag, containing coefficients to be

numerically evaluated from test data. Landweber I has made a critical review

of such methods.

For the boundary-layer relations considered in this report it is

necessary to express the frictional resistance of flat plates in terms of a

local-skin-friction coefficient as a function of a local Reynolds number or

wO - f(RO) (44]
pu

2

where R. - . Various investigators have developed expressions of this type

from drag coefficient formulas appearing in the literature.

Tetervin2 2 obtained the following local-skin-friction formula for

flat plates from the universal resistance law for pipes

wo 1[

2.5 n ] 5
.5 (1 -5VU

Since rw /U 2 appears also on the right hand side, it is an unwieldly equation

to use numerically. Furthermore, as it is based on pipe-resistance data, it

applies only approximately to flat plates.

Squire and Young", by a combination of the von Kirmain asymptotic

formula and the Prandtl and Schlichting drag law, derived the following ex-

pression for the local-skin-friction coefficient

'w [ 2

PU 5.890 log, ( .075 R,J 
23]
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The Prandtl and Schlichting drag law has been criticized for its use of pipe

velocity profiles in its derivation.
3

Falkner,13 by a study of various test data for flat plates proposed

the following simple power-law formula

Tw .006534 (251o u2  R 0 16

Like all power-law formulas, this equation is valid only for a limited range

of Reynolds numbers.

Ludwieg and Tillmann18 derived the following equation from the test

data of Schultz-GrunoW
23

W0  .0167=t46o

pU (lOglo R )1.88

for 2 x IO <R# <7 x 1.
A local-skin-friction formula will now be derived from the well-

known Schoenherr (Kirman-Schoenherr) frictional-resistance formula for flat

plates. From an extensive collection of test data for the frictional resist-

ance of flat plates covering a wide range of Reynolds numbers, Schoenherr '

supplied numerical values to the coefficients of the von Kirmin asymptotic

drag-law formula. The Schoenherr formula has become the basis of frictional-

resistance calculations for the prediction of full-scale-horsepower from tests

on models of ships. The Schoenherr formula As

C1r 4 .13 log,, (R xC) [ 47]

where R - . Here
X V

Cf D (48f I U2S

where D is the drag and S is the total surface area. Hence for a flat plate

of width W and length x the drag of one side is

D =C f1 x W [49]If
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Foi a flat plate with zero pressure gradient the von Kirman momentum equation

reduces to

da O  .[50]

x
Slf rwdx 1511

0
or

0 [521
'OU

2

where by definition

W - f 7 w dx0 °

Hence-

WD pU'W [53]

Finally from Equations (49] and (53]

cf (54]

The substitution of the relations for Cf from (54] and for R. into thefx
Schoenherr formula, [47], produces

x 42e [55]
4..13 V1 log., -;-;

Differentiation with respect to x gives

i'dx x ) 2U 1 56]

d 8.26 V °210 ( ) + log]o (

Substituting for (1)1 from (55] and using [50] finally results in

0.01466

jpU2 log, (21, 2log10 (2R#,)+0.4343]
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With the exception of Falkner's equation, all the local-skin-

friction formulas discussed in this section are plotted together in Figure 10

for comparison. It is seen that there are no appreciable numerical differ-

ences among them. For convenient reference the flat-plate formulas are listed

in Table 2.

TABLE 2

Summary of Formulas for Local-Skin-Friction Coefficients

of Flat Plates

Investigator Date Origin Formula for Local-Skin-Friction Coefficient Remarks

Tetervin 1944 Universal Pipe Re- r Based on pipe re-
Reference 22 sistance Lav 45] sistance dataPt 2.5 In, +5.5.5 1' 1

Squire and 1937 von Mrin Asyip-
Young totic Formula and Iw _ __ _ )_

Reference 11 Prandtl and 2-= 5.890 log 4.075 R3]Schlichting Drag( PUl
LAW

Falkner 1943 Experimental Data Limited range of
Reference 13_ 0.006534 1251 Reynolds number

PU' A1

Ludwieg and 1949 Schultz-Orunow Tw 2x 10R* c<x 109R Tllenn Data 00167 [461
Refeorence 18 P (log, R* )R,

ormnvIlie 1951 Schoenharr Formula r 66 7x.1°0<'< 8x 109
(This report) (von " ,.n A, y[1 o ,2.,.o

tatic Formula) l og ~ C2.[og1. (2R, 1+0.43431 ________

In addition to the local-skin-friction coefficient, the variation of

the shape parameter of the velocity profiles Ho of flat plates with Reynolds

number at zero pressure gradient, is required in Equation [40] to evaluate the

local-skin-friction coefficient in a pressure gradient. From the measurements

of Schultz-Grunow,23 and from unpublished British data, Tetervin and Lin'5

formulated the following empirical expression

logoH o M 0.5990 - 0.1980 1ogo10 R + 0.0189 (log Ro )2 [58]

for 1.5 x I03 < Ro < 1 x 105. Figure 11, where Equation [58] is plotted,

shows the decrease in H, with increasing Reynolds number R,.
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Schwenherr
2 .N, / ---- Sdwltz-Grnow(Ludleg aTilman4

-Pope Ruellane (Tuelif)

-Squire 6 Young

Q

0.! - -

010 a 1 66? 0 a10 67ai,

Figure 10 - Local-Skin-Friction Coefficient ?r /pUm as Function of

Local Reynolds Number Re for a Flat Plate

Ii- --- IT I
log. 10 jiN 0o 0.90-01 " t + O.O"WI no

IA

1.3

LL I
1.9 2 3

Figure 11 - Variation of Shape Parameter He with Local Reynolds Number R#
for Flat Plates .(Tetervin and Lin, Reference 15)
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INTEGRAL OF THE SHEARING-STRESS DISTRIBUTION

ACROSS THE BOUNDARY LAYER

I In order for the moment-of-momentum equation [271 to be used numer-

ically a relationship is required which describes the effect of pressure gradi-

ents on the integral of the shearing-stress distribution across the boundary

layer f ,,d(Ty). Although almost no study, either theoretical or empirical,
," 0  6W

has been made of the integral of the shearing-stress distribution, some stud-

ies have been made of the shearing-stress distribution itself.

The hot-wire measurements of Schubauer and Klebanoff,25 shown in

Figure 12, demonstrate the large changes produced in the shape of the shearing-

stress profile by an adverse pressure gradient. The chearing-stress curves

have a positive slope at the wall determined by the positive pressure gradient;

they then come to a peak, and finally drop to zero at the outer edge of the

boundary layer. Several attempts have been made to derive analytical expres-

sions for the general shearing-stress distribution; these are described below.

Fediaevsky,26 following the Pohlhausen method for laminar flow,

tried to fit a polynomial expression for the shearing-stress distribution that

would satisfy the boundary conditions at the inner and outer edges of the

boundary layer. The coefficients Aj of the following polynomial are to be

evaluated:

A~ (591

The boundary conditions imposed by Pediaevsky are:

a. At y - 0, - - by definition,' Tw
'w

b. At y- 0, from the boundary-layer
equation, Equation (1],

.c. At y - 6, 7 - 0 from the definition of
boundary-layer thickness,

d. At y = 8, j_ 0 from the assumption that
ey the derivative of the total

head of the outer streamline
is continuous,

e. At y-, 0.= 0 from the derivative of the
boundary-layer equation,
Equation [1] and Op/ay = 0.
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Substituting only the first three boundary conditions a, b, and c into Equa-
tionf 591 and its derivatives to form a system of simultaneous equations for
evaluating the coefficients, results In the following quadratic equation for

the shearing-stress distribution

T-1-Z) + , (60]

where a = 4 , a pressure-gradient parameter. Using all five boundary con-
ditions yields the following quadratic equation for the shearing-stress
distribution

+ )-(4 + 3a,)(T) + (3 + 20)(.()4 [61]

Schubauer and Klebanoff's found indifferept correlation between their experl-

mental results and either of Pediaevsky's equations. Agreement is good at the
beginning of the adverse pressure gradl-

__ent and near the point of separation
bi4t is extremely poor at the inter-

mediate stations.
£ In an attempt to improve on

the Pediaevsky formulations, Ross and
Robertsone' considered the shearing-

, stress distribution to depend on its
previous history of development along
the boundary layer. Pediaevsky's bound-
ary condition (d) is altered to X= -t

at y - 4, in order to obtain a constant
slope at the outer edge of the boundary

* tlayer travelling downstream from i, the
initial position of the adverse pros-
sure gradienc This requirement makes

0 2 4 4 8 the shearing-stress distribution depend
_ on conditions upstream. Using a modi-

Figut'e 12 - Shearing-Stress
Distributions in an Adverse fled polynomial expression for r and

Pressure Gradient as Incorporating the revised boundary con-
Measured by Schubsuer and
Ilebanoff, Reference 25, dtion (d), together with the other
At Various Stations four Fedievsky conditions, Ross and

Robertson derived the following
expression:
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i '80p( -J1) - (+)(I - )+ (a + i)( [fe~ 621

where
q 2a + P+ 1

and

A comparison of the above expression with the experimental findings of
Schubauer and Kiebanoff shows a somewhat better agreement than the Fediaevsky
relations.

The integral of the shearing-stress distribution will now be studied
by Integrating the analytic relations just described for the shearing-stress
distribution and by analyzing the test data of Schubauer and Kiebanoff. Let

Iujidj) [631

By elementary integration the following expressions are derived: For the
Fediaevsky 3-condition polynomial, Equation [60],

I a 0.67 + 0.17a f64#]

for the Fediaevsky 5-condition polynomial, Equation (611,

i - 0.60 + o.15a [651

and for the Ross and Robertson equation, Equation [621

Ia (2a# +5.B -3) (661
2. + 3,0- 1

Significant results are obtained from the data of Schubauer and
Ilebanoff when the integral of the shearing-stress distribution is non-
dimensionalized as follows

r d ~I(Y) (67]

or

a [681
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Values of 0 are computed directly from the measurements of Schubauer and

Klebanoff by substituting data into Equation [67] and performing the indicated

integrations numerically by Simpson's rule. For comparison, values of 0 are
obtained from the analytical formulations of I based on the jethods of
Fediaevsky and of Ross and Robertson by inserting values of a and ,Bfrom the

experimental data into Equations [64 ), [65], and (661. As seen in Figure 13,
In which * is plotted for various stations along the boundary layer, both of
the Fediaevsky formulations show poor correlation with experimental points

* while the Ross and Robertson formulation shows only fair agreement. It is

observed that except for experimental error the value of 0 is practically con-
stant for different stations, along the boundary layer. This supeats that
using a value of * independent of the effects of pressure gradient ought to be
sufficiently accurate for most technical problems encountered.

FWWWotion Cin hne

0.015

" 0.010

• ~WWw" I ,-"

0 . 0 ,7n l  is 19 t o 1 2 3 4 It s I s

station X In b

Figure 13 - Integral of Shearing Stresses Across the Boundary Layer
for Data of Schubauer and Klebanoff, Reference 25

Before deciding on values of * for pressure gradients in general,
it will prove fruitful to investigate the values of 0 in a zero pressure gradi-
ant. From Equation [68] V1 for a zero pressure gradient or 0. may be written
as

00- A * o (691'Pu"ts
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From (12], where a power law for the velocity profile is assumed,

0 HO +I
HO -170]

0 0

Then

00 00[71)

The value of 10is now derived analytically from the momentum and
from the moment-of-momentum equations for flat plates with zero pressure gradi-
ent ( U- 0) In the following manner. The moment-of -momentum equation, (271,
reduces to

0~ -3 H 1) HO - (F. + 1 ] ( 72]

and the momentum equation to

clG 7j~ 50]

Combining both equations gives

%j-u0 (H 1r (H +1I) 1~ (71

or

In terms of [*-.!! 74] becomes

__ = (H 1[H - (H + 1 11
R (751

Differentiation of the empirical equation of H., Equation (58], with respect

to Re produces

MH (-0.1980 + 0.0378 log1*R) H*(]
0 0 (76'R
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Finally 10 is evaluated by equating [75] and [76]. Then

I0 = H [ + 0.1980 - 0.0378 10 O

H 0 + H 2 1 [771

R, may be eliminated by use of Equation [58] to give

10 H0  I+ 0.0378Y52.9 logloH 0 - 4.18 7
01110+1 [H o - 1

The small variation of 1o with Reynolds number R, is shown in Figure

14. For instance, at R. = 1500, 10 = 0.633 and at R. = 100,000, 10 .= 0.554.
These values appear reasonable when compared with those based on the Fediaevsky
formulations: From Equation (64] for three conditions I. = 0.67 (a = 0 for
zevo pressure gradient) and froi Equation [65] for five conditions 10 = 0.60.

0.0070.

*10

-1!6.r o.oo6 0.6

0.0040.

0.003 1 110.3
'03 2 3 4 5 6 7 ,91042 4 5 s 7 "910

Re "

Figure 14 - Variation of Integral of Shearing Stresses across
Boundary Layer with Reynolds Number R. for Flat Plates

Finally from Equations [71] and [78] 0o is written

0w H 0.0378/52.9 log.oH -

o -1 H2 -1 [791

Using the value of r wopU2 from [57]-, derived from the Schoenherr
formula, and the value of H from [581, the variation of 0. with Reynolds
number is shown graphically in Figure 14. It is seen that 0o diminishes grad-
ually with Reynolds number.

I
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When the values of based on the same Reynolds number as those

appearing in the experiments of Schubsuer and Klebanoff, are plotted in Figure

13 for comparison, they produce a curve of almost constant value which is in

excellent agreement with the experimental points of 0. Based on this evidence

it will be reasonable to conclude that at the same Reynolds number 0. is a

close approximation to 0 for other boundary layers in pressure gradients sim-

ilar to the boundary layer of Schubauer and Klebanoff. Further substantiation

depends on additional experimentation, especially at high Reynolds numbers.

The integral of the shearing-stress distribution as required by the

moment-of-momentum equation, Equation [27], is expressed in terms of 0 as

follows:

dJ2  *fj d (803
'0/+ U2 '" a*

For power-law velocity profiles

i H H -1,(12]

and with the assumption ' = o' where io is defined in Equation (71], the

integral of the shearing-stress distribution finally becomes

rf qdy) _ HIe* (81]"U a " ')(. - 1)u) o U2

This completes the shearing-stress relations required for transform-

ing the moment-of-momentum equation into an auxiliary equation for character-

izing the shape of the velocity profiles.

MODIFIED MOMENTUM AND MOENT-OF-MOMENTUM EQUATIONS

The substitution of the relation for local skin friction in a pres-

sure gradient, Equation (40], into the von Ormrn momentum equations, [6a] and

[6b], modifies them as follows: For two-dimensional flows,
4

S .. +- 2) - (P .82a

and for axisynmetric flows (where 0- rw),
4

d(rwo) r~T 'r.

dz ( )r0 Ur 8b
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The insertion of the relations for local skin friction and for the integral

of the shearing-stress distribution, [40] and [81], into the moment-of-

momentum equation [27], converts it into the following equation, which is ap-

plicable to the calculation of both two-dimensional and axisymetric flown

where d<<r W

+ (H [H '" -( " - (H1N $ I] 2 (83]
dx ' dx 0 01pU2

where y, yo and I0 are defined in Equations [42], (43], and [78] respectively,

and the subscript o refers to flat-plate values at the same Reynolds number Re.

This equation is the desired auxiliary equation to be solved simultaneously

with one of the modified von Kirmin momentum equations, [82a] or (82b], for

calculating the growth of boundary layers in pressure gradients.

The modified moment-of-momentum equation of this report represents

an auxiliary equation whose form has a theoretical basis and whose coeffi-

cients have been evaluated indirectly from flat-plate data. On the other hand

the various auxiliary equations described in this report are almost wholly

empirical in origin. A comparison of the auxiliary equations may be made by

writing them in the following generalized form

_A q!-) B[841

The expression for the variation of n in the Gruschwitz or Kehl method is con-

verted into the above form by using the power-law formula, [15], for the rela-

tion between n and H. The expressions for the coefficients, A and B, are

listed in Table 3 for the various auxiliary equations. It is seen that the

coefficients for the Kehl, Garner and the moment-of-momentum equations are

functionally similar with A - f(H) and B - f(H, Re). The von Doenhorf and

Tetervin equation, nowever, has the Reynolds-number effect in coefficient A

instead of coefficient B. As expected, none of the coefficients for the

Gruschwitz method exhibits a Reynolds-number effect.

The coefficients A and B are plotted against H in Figures 15, 16,

and 17 for two different values of Re. It is observed that although all the

curves have the same general shape and trend, there are marked differences in

the magnitude of the ordinates. The exponential form of the coefficients of

the Garner and of the von Doenhoff and Tetervin equations is responsible for

the very large increase in value of the coefficients at the higher values of

H. The curves for the coefficients of the modified moment-of-momentum equa-

tion of this report maintain average positions among the other curves.
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Figure 15 -Coefficient A of General Auxiliary Equation
Compared for Various Formulations
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Figure 16 - Coefficient B of General Auxiliary Equation Compared forVarious Formulations at Reynolds Number R. a 1 .5x 10'
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Figure 17 -Coefficient B of General Auxiliary Equati-on Compared for
Various Formulations at Reynolds Number R. = 1 x 10'

Although this fact does not conclusively prove the validity of the modified

moment-of-momentum equation, it does indicate that-as such-the modified

moment-of-momentum equation has a proper range of values for an auxiliary

equation giving the variation of H. There is a need for a larger body of re-

liable measurements of turbulent boundary layers under a variety of conditions

and for increased emphasis on measurements of the shearing stresses both at

the surface and throughout the boundary layer.

SUM ARY OF METHOD OF CALCULATING TURBULENT BOUNDARY LAYERS
IN A PRESSURE GRADIENT

For calculating turbulent boundary layers in a pressure gradient the

following relations are involved:, The momentum equation for two-dimensional

flows,

(H + 2) 1 U + 7 [ 82aJ

dx UU 2

0IP



or the momentum equation for axisymmetric flow (6<<r),

4
d~r e)rw 0dU 17  Ho+14

w -( + 2) -+() r - [w (82b]
dx U 0 pU2

and the moment-of-momentum equation which holds for both two-dimensional and

axisymmetric flows (6 <<rw),
4-

dHXR - "H ( H+ I )(H 2 _1 "0 ' U + (Ha 
2 1) H s '- (ll I ) H o I ) 1]1(Io 183

GdUx + (HU dxO~ (H - 1) - .. [

where

H -[HI1 (4' 2]I

and 1_ 1  1

0o Ho (Ho +1 )j (431

4

The variation of (Y/Yo)R-+- with H and Ho is shown in Figure 9. The varia-

tion of Ho with R., shown in Figure 11, is given by Reference 15 as

lOg10Ho = 0.5990 - 0.1980 logoR, + 0.0189(logoRO) 2  r58]

The relation between I. and Ho'is

0= [ +00378V52.9 log 0H'4"18] (78]Ho + H 1+2 - 1

0 0

Figure 14 shows Io as a function of R,. The variation of r /pU2 with R.,

Figure 10, for the Schoenherr formula is

-'w.. = 0.01466 [57]
pU2  logo (2R )[- lOglo (2R,)+0.4343]

The variation of U and dU/dx with x will be specified for a particular problem

and may be obtained either by pressure measurements or potential-flow
calculations.

The momentum and moment-of-momentum equations are solved for O(x)

and H(x) as a pair of simultaneous differential equationS, usually by numer-

ical methods involving step-wise integration. The initial conditions for O(x)

and H(x) are imposed by the physical conditions of the problem such as the
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transition point from laminar to turbulent flow. It is customary to use the

value of 0 of the laminar boundary layer at the transition point as the Ind-

tial value of e for the turbulent boundary layer. Owing to the lack of reli-

able data on transition, the initial value of H may be taken as that for a

flat plate at the -same Reynolds number R.
The evaluation of 0 and H is required in many technical hydro-

dynamic and aerodynamic applications involving calculations of drag and of

velocity profiles of boundary layers. According to the following formula of

Squire and Young 1 for the profile drag of airfoils, 0 and H must be deter-

mined at the trailing edge H+

D-PU2.~W [85]
IU,

where the subscript t refers to conditions at the trailing edge. If a power-

law distribution Is assumed, the values of 9 and H at any station along the

boundary layer specify the shape and thickness of the velocity profile, as

shown by Equation (16],
N-i

u1 R __ ' Hi (16]

A knowledge of the characteristics of the velocity profiles of boundary layers

is required for the design of control surfaces and propellers on forms moving

in fluids and of the various conduit sections of water and wind tunnels.

Large values of H indicate the danger of flow separation for cases involving

adverse pressure gradients.
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